

Donald Friedman Susie Bozzini

Jordan Rollover System

Rollover frequency and AIS 3+ Injury

As much as 40% of these injuries occur in pre roll crash events, limiting the likelihood that ESC will be as effective as predicted, emphasizing occupant out of position concerns when the rollover commences.

Ejections are a Major Problem

Table 1.4 Fatal Glazing Ejections					
Annual Average for 1995-1999 NASS, Fatalities Adjusted to 1999 FARS					
	Rollover	Planar	Total		
Complete Ejection	3,295	1,516	4,812		
Partial Ejection	1,476	1,348	2,824		
Total	4,772	2,864	7,636		

Basis for JRS Dynamic Repeatable Rollover Testing

- Malibu and Blazer Dolly Rollover Data
- NASS 500 Serious Injury Case Investigation Data
- Injury & Ejection Potential Measures

Reference Details

- "A Study of NASS Rollover Cases and the Implication for Federal Regulation" ESV 2005 publication
- "What NASS Rollover Cases Tell Us" ESV 2007 publication
- "A Rollover Human/Dummy Head/Neck Injury Criteria" ESV 2007 publication
- "Results From Two Sided Quasi-Static (m216) And Repeatable Dynamic Rollover Tests (JRS) Relative to FMVSS 216 Tests" ESV 2007 publication
- "Human/Dummy Rollover Falling (Excursion) Speeds" ESV 2007 publication

Jordan Rollover System (JRS)

Design CriteriaSystem FunctionalityTesting Results

Combining 50 years of Testing Experience

- Acen Jordan has designed, built, and implemented more than 30 test sleds to testing facilities and manufacturers around the world.
- Donald Friedman has designed and tested numerous vehicles, sleds and other measurement tools over his 50 years in automotive safety.

The results of their collaboration: **The Jordan Rollover System**

- A standard pneumatic sled to be used as a road bed for the vehicle to drop on to.
- A spit drop test rig to hold and rotate the vehicle
- Instrumentation to measure the loads on the inside of the vehicle and in the road bed.
- A control module to set testing parameters such as roll angle, roll rate and road bed speed.

Jordan Rollover System Fixture

JRS Sled Construction (road bed)

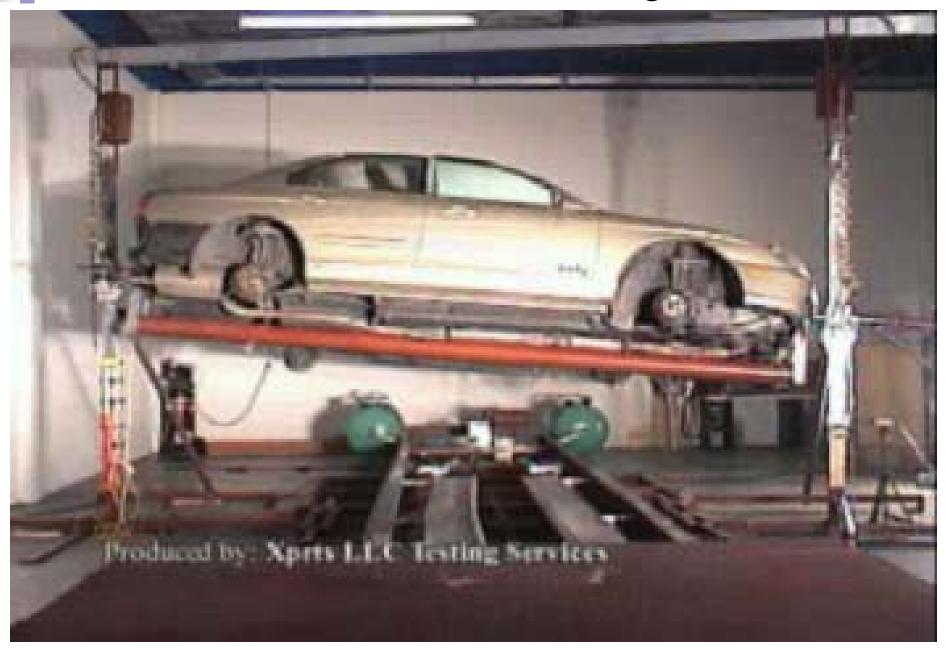
- Sled weighs 3600 pounds and is constructed of steel and aluminum
- Impact surface is an eight inch thick wooden surface covered with a grit surface that approximates the co-efficient of friction of asphalt
- Using plywood surfaces for testing is common practice in automotive industry and testing facilities

JRS Sled Construction (road bed)

Sled is inertially matched to vehicle

- The sled provides the translational velocity that a vehicle has when rolling over in the field
- The sled slows down when the vehicle impacts it because a vehicle rolling in the field converts its translational velocity in to rotational velocity when it contacts the ground

JRS Drop Tower Construction


- Towers are fixed, yet expandable to fit different vehicle sizes
- Towers fitted with vehicle cradle for rotation in impact event
- Towers have brakes to "catch" the vehicle after the impact event, so it maintains and isolates the test result deformation

Data Acquisition Systems

- Industry-standard data measurement and acquisition system is used to collect data from the sled and vehicle:
 - More than two dozen data channels are recorded from the sled, vehicle and Hybrid III dummy
- GMC uses the same data acquisition system at it rollover test facility

JRS Phase I Research Testing Series


JRS Initial Impact Conditions Criteria

JRS Impact Conditions

- Derived directly from GM's own reporting of roof-to-ground impact conditions in the Malibu test series
- Derived from extensive analysis of dolly rollover tests conducted by GMC in defense of litigation
- Derived and validated from detailed investigation of over 600 rollover accidents in litigation
- Validated by investigation and review of over 400 NASS cases

JRS Impact Conditions

GM's Malibu studies Conducted by litigation engineers and consultants □ Two series totaling 16 dolly rollovers Extensively instrumented and filmed

JRS Test Conditions – Road Bed Speed and Drop Height

- 95% of rollovers are 2 rolls or less
- Typical speed at the initiation of the roll sequence is 20+ mph
- Decrease in rolling velocity due to friction
- CG falls approximately 4" to near side contact

The JRS can run at variable speeds. We run at 15 or 18 mph on most tests.

JRS Test Conditions – Roll Rate, Angle and Pitch

- In dolly rollover tests, the first near side roll contact occurs at 200° per sec. and 130+ degrees.
- Near side friction increases the roll rate to 300 degrees per sec. by far side impact.
- The pitch can be as little as 5 degrees in low severity rollovers.

JRS Test Conditions – NASS Data

A STUDY OF NASS ROLLOVER CASES AND THE IMPLICATION FOR FEDERAL REGULATION

Carl E. Nash, Ph.D. Center for Injury Research Allan Paskin Xprts, LLC United States Paper Number 05-0415

ABSTRACT

NHTSA identified 273 NASS rollover crashes occurring from 1997 through 2000 in which the light vehicles had more than 6 inches of residual roof crush. The agency analyzed these cases, but we have studied them in much more detail. We found a number of important, consistent features that demonstrate conditions that produce rollover injuries, and strongly indicate how rollover casualties can be reduced using readily available technologies. We found: (1) nearly two-thirds were essentially flat ground rollovers without complications: (2) the windshield was always broken when the front of the roof was damaged; (3) virtually all had major damage over an A pillar and a substantial majority had front fender damage indicating that forward pitch in at least one roof impact was roughly 10 degrees; (4) where the vehicle executed more than ½ roll, the initially trailing side of the roof generally had the greatest crush; (5) safety belt use was critical to the pattern of injuries and ejections; (6) the type of roof damage is a function of its design and the nature of the roof impacts; (7) nearly one fifth of the occupants had MAIS 3 or greater injury to the head, face, or cervical spine; and (8) when non-ejected occupants received head, neck or upper torso injuries, they were generally seated on the initially trailing side under a significantly crushed part of the roof. Our study strongly suggests which countermeasures would best address the problem of light vehicle casualties in rollovers, discusses various candidate countermeasures, and estimates the casualty reduction that would result from them. Finally, we discuss the implications for Federal policies.

INTRODUCTION

Several years ago, the National Highway Traffic Safety Administration (NHTSA) asked the public for "views and comments on what changes, if any, are needed to the roof crush resistance standard," Federal motor vehicle safety standard (FMVSS) 216. Shortly afterward, Administrator Jeffrey Runge, M.D. said, "NHTSA plans to propose an upgrade of its roof crush standard to require roofs to allow less crush during a rollower event." As of January 2005, the agency had received 120 comments. Virtually all comments from outside the auto industry support strongthening the standard. The authors of this paper have submitted a large volume of data that should help the agency develop an effective amendment to that and related standards.

NHTSA estimates that 16,000 light vehicle occupants receive serions, non-fatal injuries and that more than 10,000 are killed in rollover summally. Of those, NHTSA estimated that 28 percent were not ejected and were injured from roof contact (almost all were from roof j

While NHTSA

crush, the Mali

substantially re-

breakage which

[4] partial eje

openings as a re-

ejection was the

rollcaged [stros

breakage than

standard vehicle

were broken.

deformation as

roll caged vehic

windows were b

was broken by o

dummies in the

(production) rec

trailing, or far si

motor vehicle s

rollovers - inclu

is substantial. becoming more

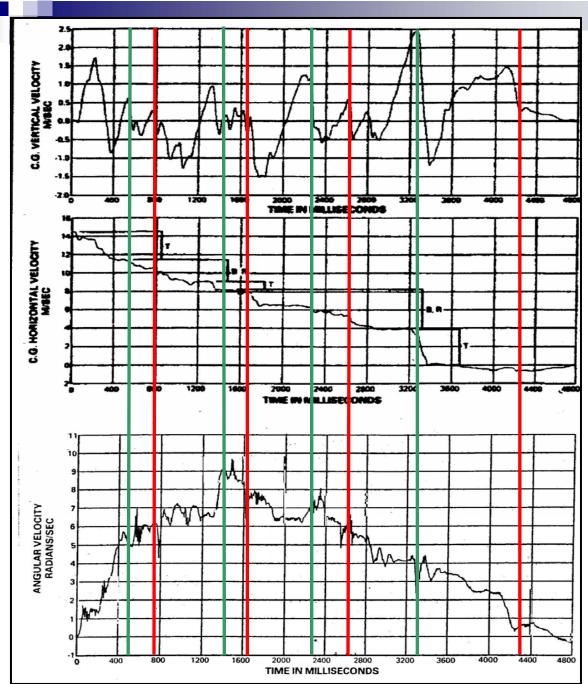
The Malibu I

10° of Pitch in Real World Rollovers

Damage was observed on the top of at least one front fender in more than 80 percent of the cases for which there were pictures, indicating that the vehicle was pitched at least 10 degrees during at least part of the time it was inverted. This is approximately the angle formed with the horizontal by a line between the top of the roof over the A pillar and the top of the front fender of virtually all contemporary production light vehicles.

light trucks as provide presenger ventores - 50-95, un particular, are grossly overrepresented in producing AIS 3+ injuries in rollovers.

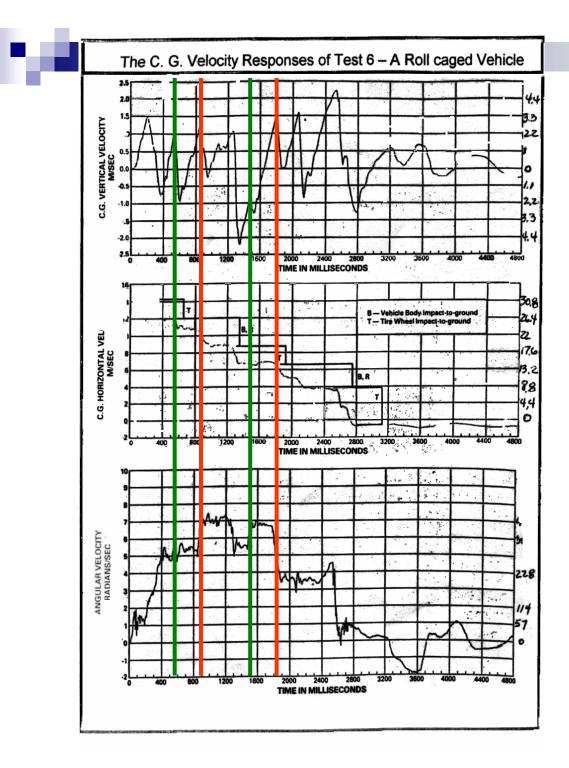
RECENT NHTSA RESEARCH AND ANALYSIS: THE 273 NASS CASES


Last year, NHTSA released two bodies of information that it is using to develop and support an amended FMVSS 216. The first [Pack], is a list of 273 National Accident Sampling System rollover

Repeatable dynamic tests provide real world consumer information not obtainable with a static test. Data such as, the injury potential performance of:

- \Box child seats,
- □ children and small adults in rear seats,
- □ roof racks,
- padding,
- \Box belts,
- door latches and
- **Unregulated and voluntary safety features, like:**
 - □ rollover activated window curtain airbags,
 - □ single and dual seat belt pre-tensioners,
 - tempered and composite glazing and
 - □ rollover activated canopy and head impact air bags.

Furthermore, such testing is consistent with NCAP dynamic tests to injury criteria in the frontal and side impact crash modes.


Technical Details and Results

GM Malibu I Test 5 (All data from GM) Near Side Contacts: (Green Lines) 550 ms = 0.6 mph 1500 ms = 0.3 mph2350 ms = 1.2 mph

3350 ms = 1.2 mph

Far Side Contacts: (Red Lines) 790 ms = 0.6 mph 1677 ms = 0.4 mph 2662 ms = 1.2 mph 4330 ms = 0.7 mph

GM Malibu I Test 6 (All data from GM)

Near Side Contacts: (Green Lines) 575 ms = 2.2 mph 1500 ms = 2.5 mph

Far Side Contacts: (Red Lines) 836 ms = 2.7 mph 1802 ms = 3.1 mph Note: Similar data between vehicle types. The main difference is the rollcaged vehicle does not crush.

ESV 2001 – Basis for JRS Initial Conditions

PII	Neck Load (N)	Time between Roof Touchdown and Peak Load (ms)	Traveling Speed at Touchdown (mph)	Degrees of Revolution at Neck Load	Vehicle Pitch at Neck Load
3L2	10,900	28	22.1±2.2	210°	5°
3L3	12,000	30	20.0±2.1	1 roll+210°	7°
4L2	7,600	28	21.9±3.2	1 roll+225°	3°
7L4	13,200	5 + 12	6.7±.8	3 rolls+190°	10°

Table 2. Vehicle circumstances at the time of each of the four injurious Malibu II head impacts.

"Advanced Roof Design for Rollover Protection," Paper No. 01-S12-W-94, 17th International Technical Conference on the Enhanced Safety of Vehicles, June 4-7, 2001

Statistical Probability Analysis of <u>Serious Injury suggests 7 mph Criteria</u>

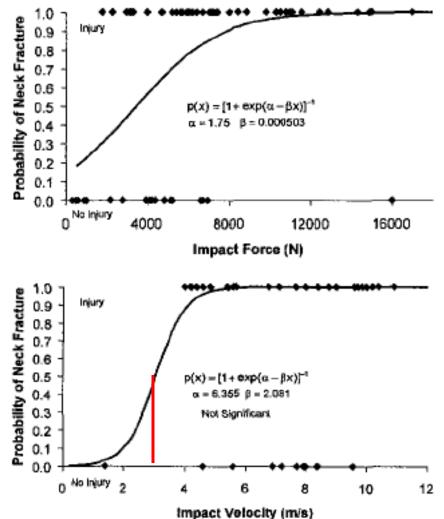


Figure 13: PMHS data on neck fracture versus impact force and impact velocity.

Rollover related Drop tests suggest 10 mph Head impact speed for <u>Severe to Fatal</u> injury

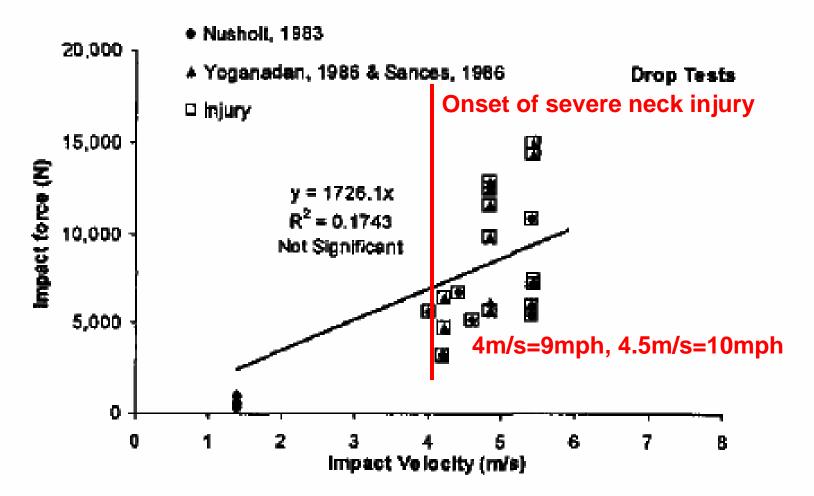
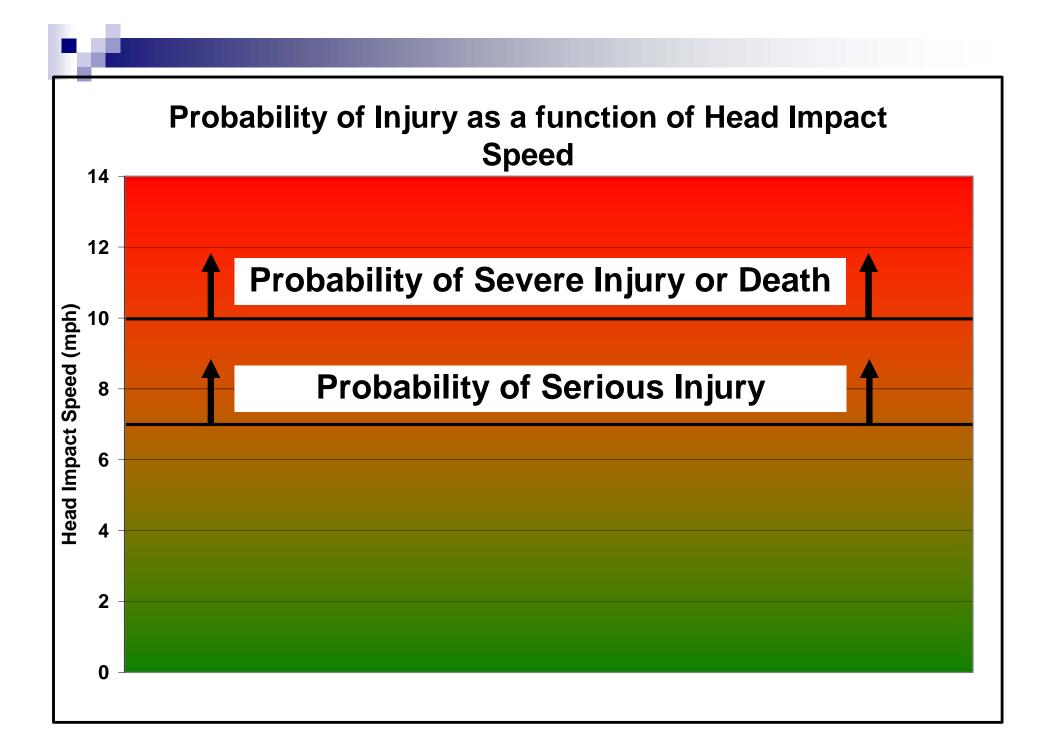



Figure 5: Impact Force as a Function of Impact Velocity for PMHS Drop Tests.

Phase II JRS Low Severity Testing

We developed the JRS low severity test protocol to represent rollover crashes at 5° of pitch which are completed in two rolls. This protocol is intended to identify the poorest performing roof designs with high injury and ejection potential

JRS testing is at a roadbed speed of 15 mph, a roll rate of 200°/second, with 5° of pitch, ~140° roll angle, 10° yaw angle and a drop height of 4 inches to the near side.

1995 - 2001 Ford Explorer 2003 - 2006 Volvo XC90

Dynamic Rollover Test Comparison

CfIR Center for Injury Research

2000 Ford Explorer 4dr Roll 1 Location	Crush (in) Peak End of Test		Peak Crush Speed (mph)
A-Pillar	-8.7	-5.9	-6.3
Mid Point Between A and B Pillar	-9.1	-5.9	-6.7
B-Pillar	-6.7	-3.9	-5.5
Inboard of A-Pillar	-7.0	-4.9	-5.8
Inboard of Roof Rail Midpoint	-11.5	-8.5	-12.1
Inboard of B-Pillar	-8.7	-6.2	-9.1
Center of Roof	-8.2	-6.3	-7.6
Near Side A-Pillar	-4.2	-2.0	-3.8

2000 Ford Explorer 2 Roll JRS Test Series

Peak Dynamic Crush – 11.5 inches

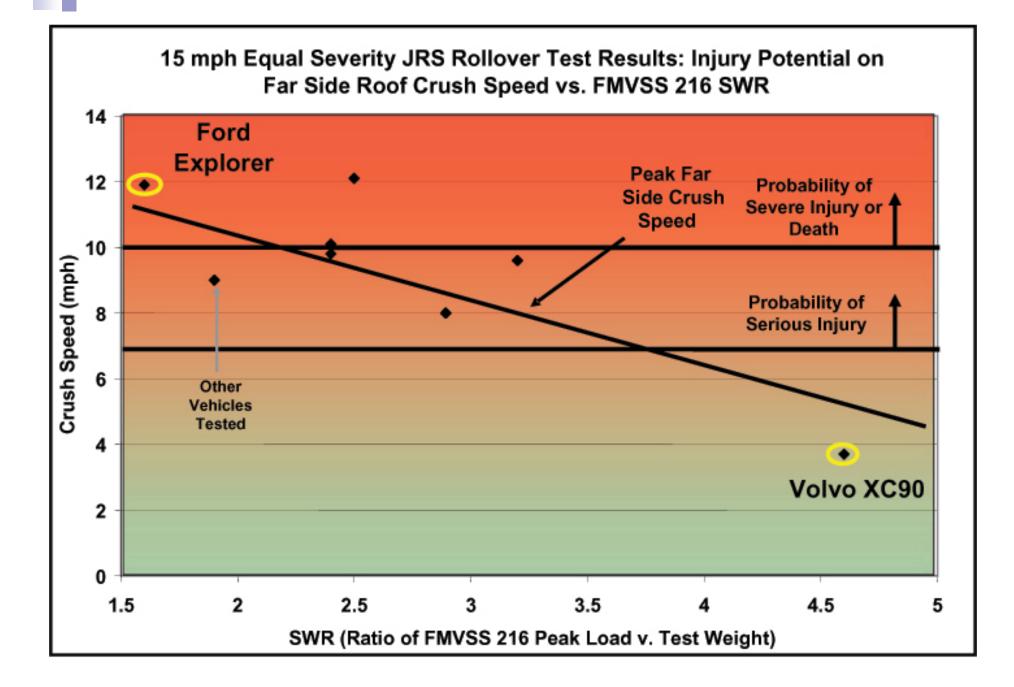
Peak Cumulative Crush – 14.5 inches

Peak Crush Speed - 12.1 mph

2000 Ford Explorer 4dr Roll 2	Crush (in)			Peak Crush Speed
Location	Peak	End of Test	Cumulative	(mph)
A-Pillar	-9.2	-6.4	-12.3	-9.6
Mid Point Between A and B Pillar	-9.9	-7.0	-12.9	-9.3
B-Pillar	-9.9	-6.7	-10.6	-8.8
Inboard of A-Pillar	-6.3	-4.2	-9.1	-7.0
Inboard of Roof Rail Midpoint	-9.5	-6.0	-14.5	-9.9
Inboard of B-Pillar	-8.9	-5.6	-11.8	-8.1
Center of Roof	-5.7	-3.1	-9.3	-8.5
Near Side A-Pillar	-2.4	1.0	-1.0	-4.1

2004 Volvo XC90 Roll 1	Crush (in)		Peak Crush Speed
Location	Peak	End of Test	(mph)
A-Pillar	-1.0	-0.1	-1.5
Mid Point Between A and B Pillar	-1.5	-0.3	-2.2
B Pillar	-1.2	-0.1	-1.9
Header Inboard of A-Pillar	-0.6	0.0	-1.2
Front of Sunroof	-1.1	-0.4	-1.8
Side of Sunroof	-1.5	-0.3	-2.3
Near Side A-Pillar	-2.1	-0.9	-3.3
Near Side B-Pillar	-3.2	-1.1	-3.7

2004 Volvo XC90 2 Roll JRS Test Series


Peak Dynamic Crush* – 2.6 inches

Peak Cumulative Crush* – 1.1 inches

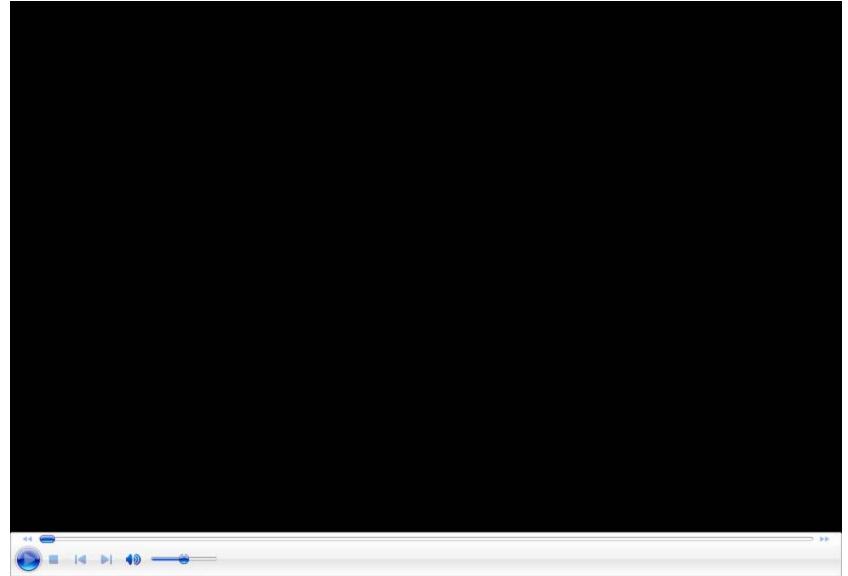
Peak Crush Speed* - 3.0 mph

* Far side only

2004 Volvo XC90 Roll 2		Peak Crush Speed		
Location	Peak	End of Test	Cumulative	(mph)
A-Pillar	-1.9	-0.5	-0.6	-2.0
Mid Point Between A and B Pillar	-2.6	-0.7	-1.0	-2.9
B Pillar	-2.6	-0.7	-0.9	-3.0
Header Inboard of A-Pillar	-1.2	-0.3	-0.3	-1.4
Front of Sunroof	-1.6	-0.5	-0.8	-2.1
Side of Sunroof	-2.5	-0.7	-1.1	-2.9
Near Side A-Pillar	-0.3	0.2	-0.7	-1.1
Near Side B-Pillar	-0.9	0.3	-0.8	-1.8

JRS 15 mph Low Severity Dynamic Rolls Ordered by Max. Roof Crush Speed at any Point for Injury Potential Evaluation

Model Years	Make/Models	216 SWR	Max Crush (Inches)	Maximum Speed (MPH)	Injury Probability
2002- 2006	Volvo XC90 SUV	4.6	3.2	3.7	Best
1999- 2005	Hyundai Sonata Sedan	2.8	6.4	8.0	Fair
2003- 2006 1995-	Kia Sorrento SUV	1.9	6.9	9.0	Poor
	Nissan Sentra Sedan	3.2	9.1	9.6	Poor
<u>1999</u> 1995- 2001	GMC Jimmy SUV	2.4	6.7	9.8	Poor
1995- 2005	Chevy Blazer SUV	2.4	9.6	10.1	Not Acceptabl
1999- 2001	Isuzu VehiCross SUV	NA	6.8	11.1	Not Acceptabl
2001- 2006	C2500 HD Reg Cab Pickup	2.2	9.9	11.2	Not Acceptabl
1995- 2001	Ford Explorer SUV	1.6	11.5	12.1	Not Acceptabl
1994- 1999	Mitsubishi Eclipse	2.5	7.6	12.1	Not Acceptabl e

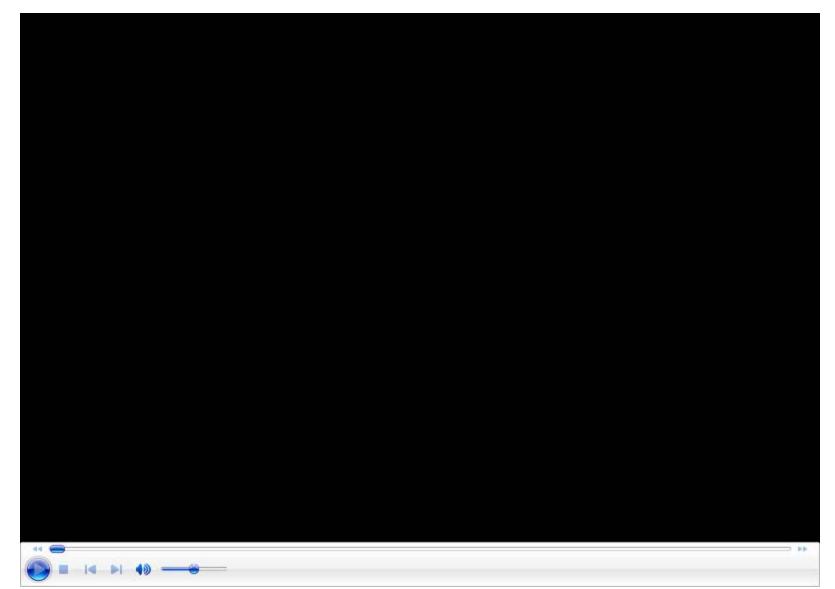

(Criteria: Best = < 6mph and no ejection portals; Good = < 6 mph; Fair = < 8 mph; Poor = < 10 mph; Not Acceptable = > 10mph)

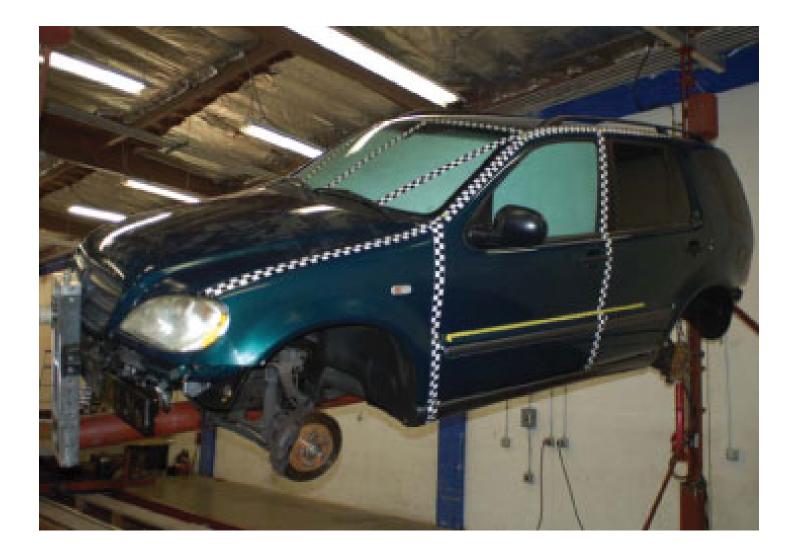
JRS Real World Severity Testing


We developed the Phase III JRS real world test protocol to represent 95% of the rollovers, which are in two rolls, where 95% of the serious to fatal injuries occur.

Real world JRS testing is at a roadbed speed of 18 mph, a roll rate of 240°/second, with 10° of pitch, 145° roll angle, 10° yaw angle and a drop height of 4 inches to the near side.

JRS 1998 Reinforced Blazer Tests

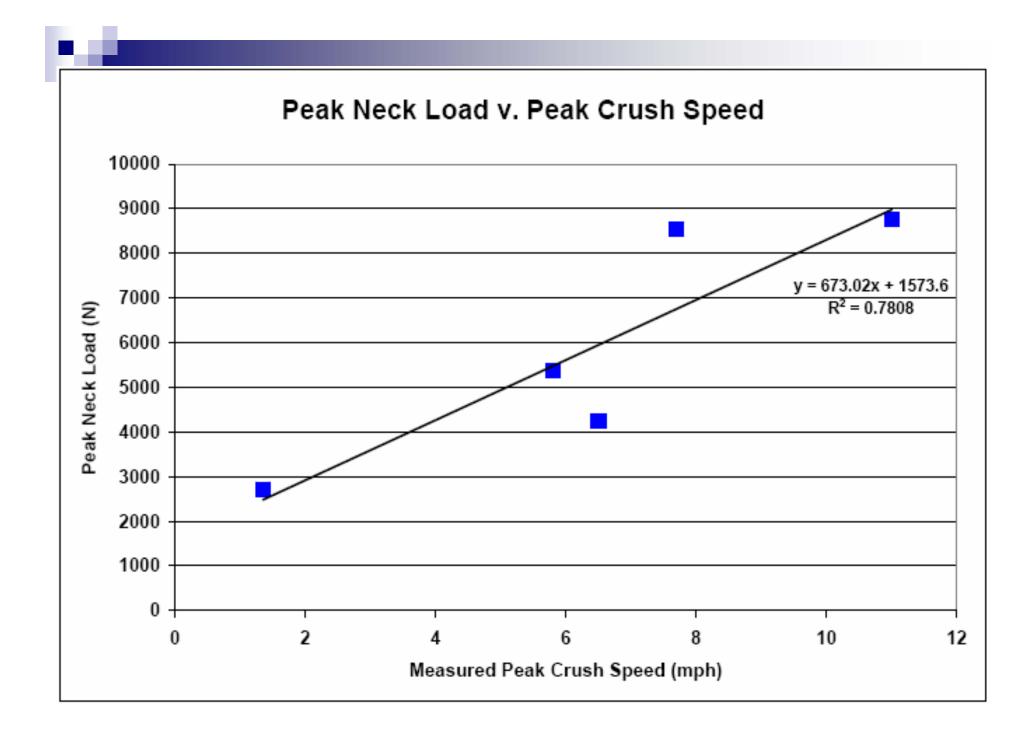

JRS 1993 Cherokee Tests

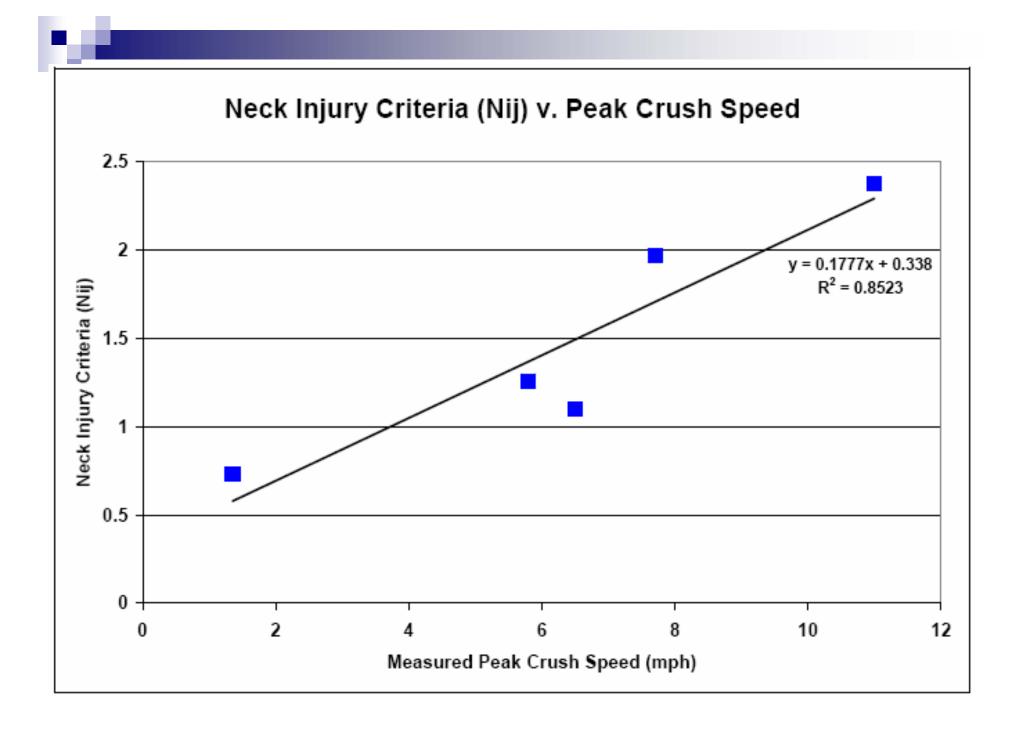

JRS 1996 Isuzu Rodeo Test

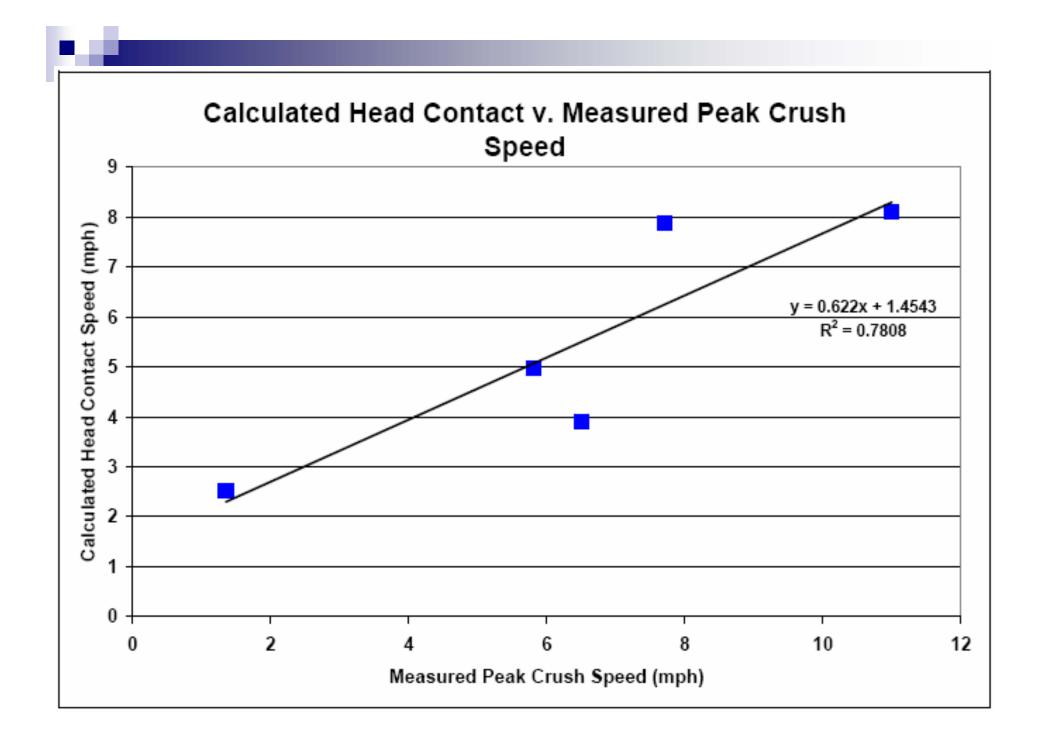
JRS 2001 Suburban Test

JRS 1998 Mercedes ML320 Test

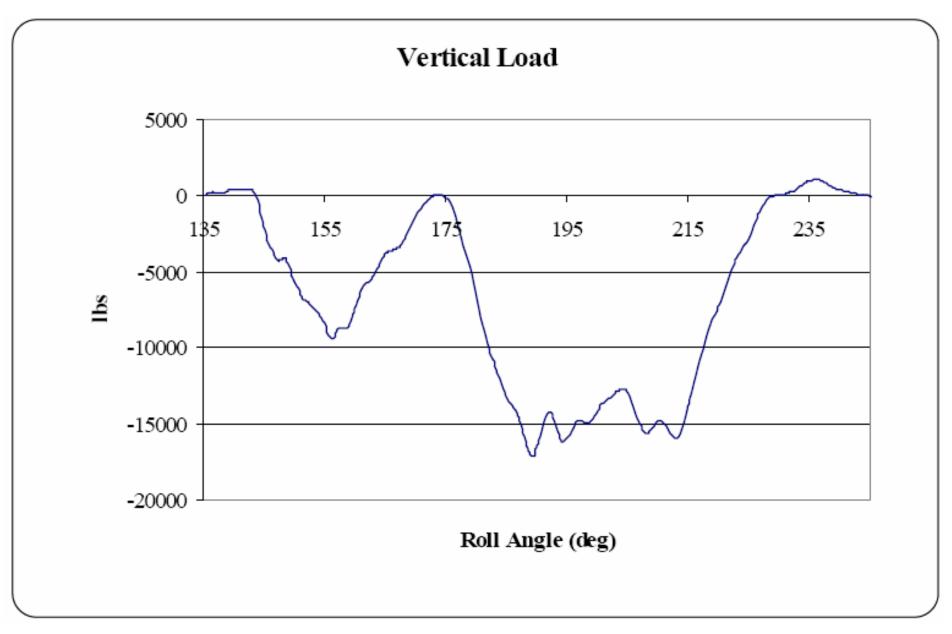
JRS 1999 Jeep Grand Cherokee

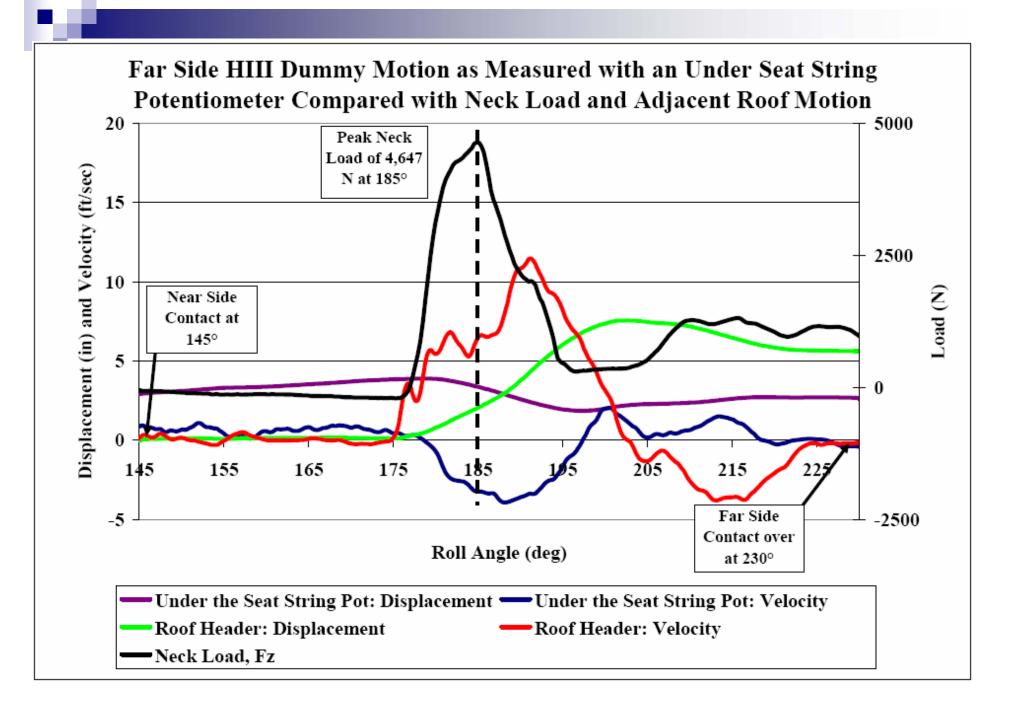

A Jordan Rollover System Test 1999 Jeep Grand Cherokee

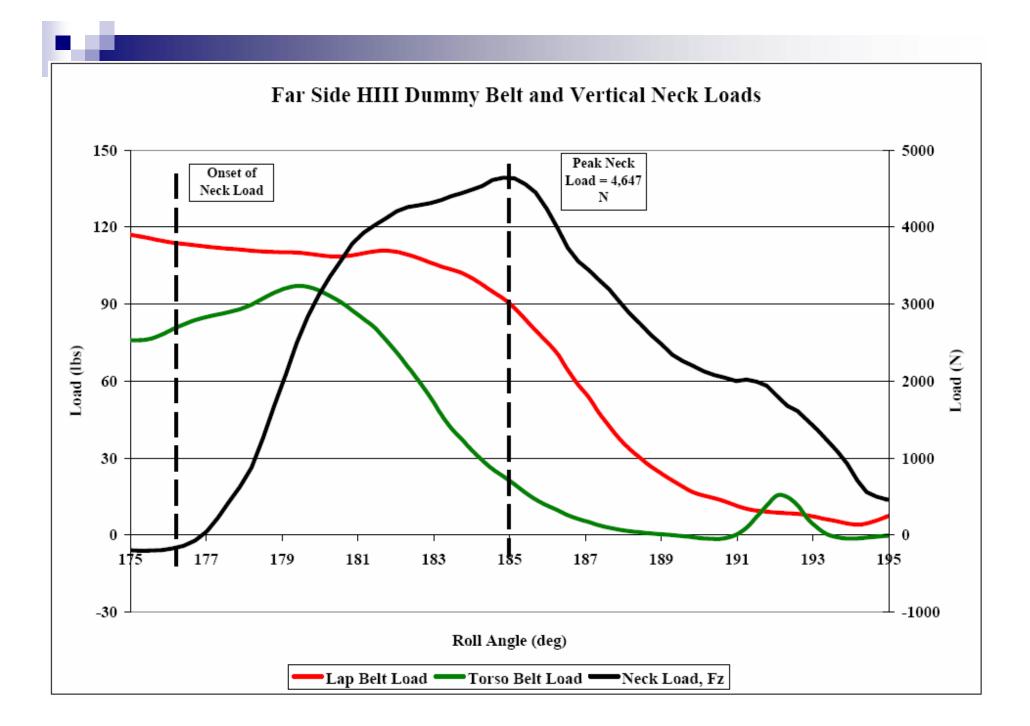

STI

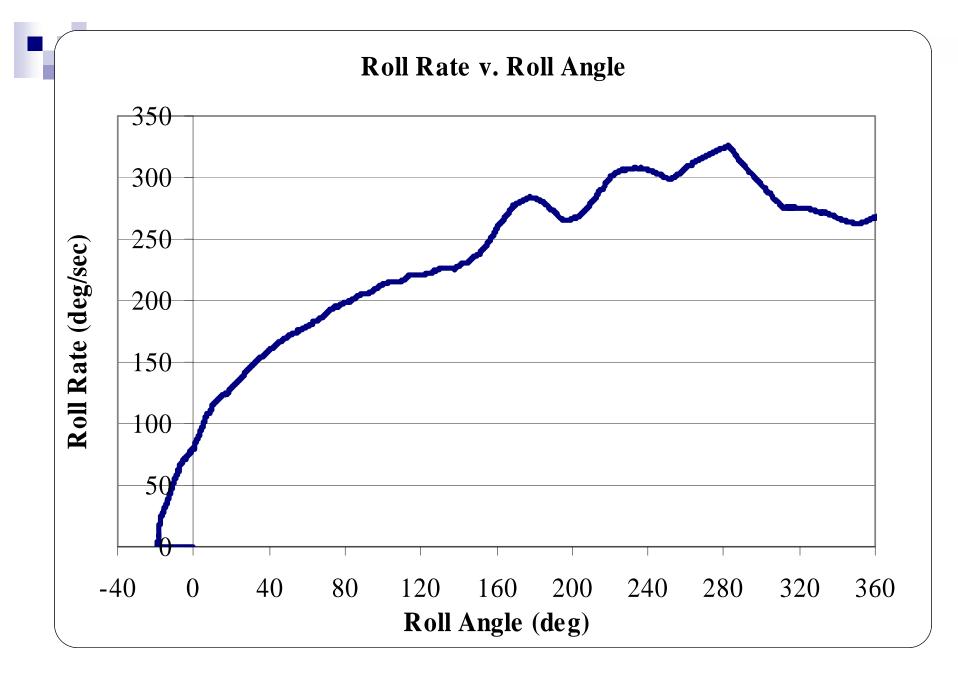

Proprietary Test Data Property of Safety Testing International

JRS 18 mph, 10° Pitch, 1998 ML320 Test

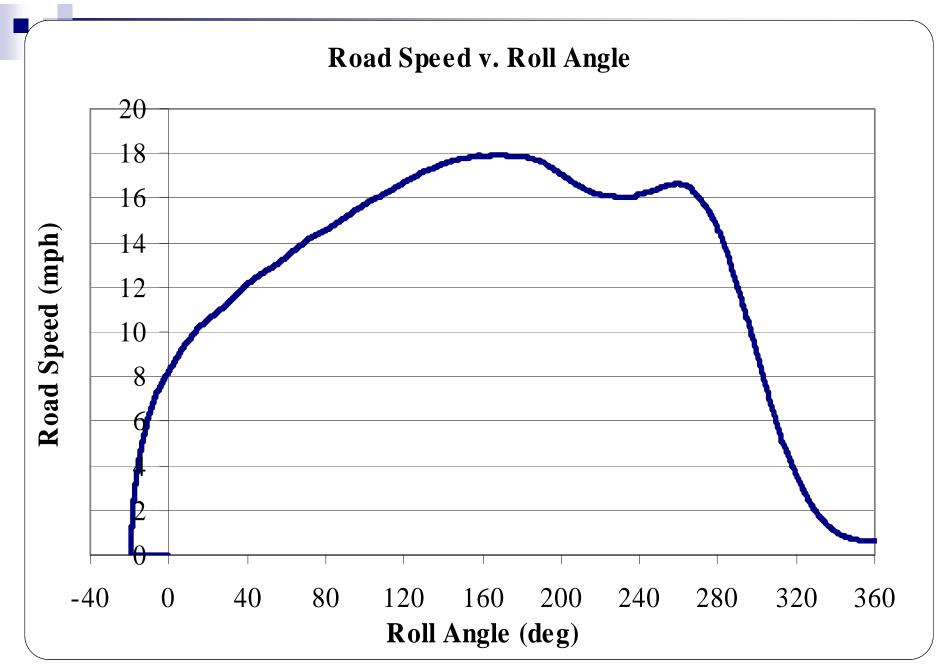


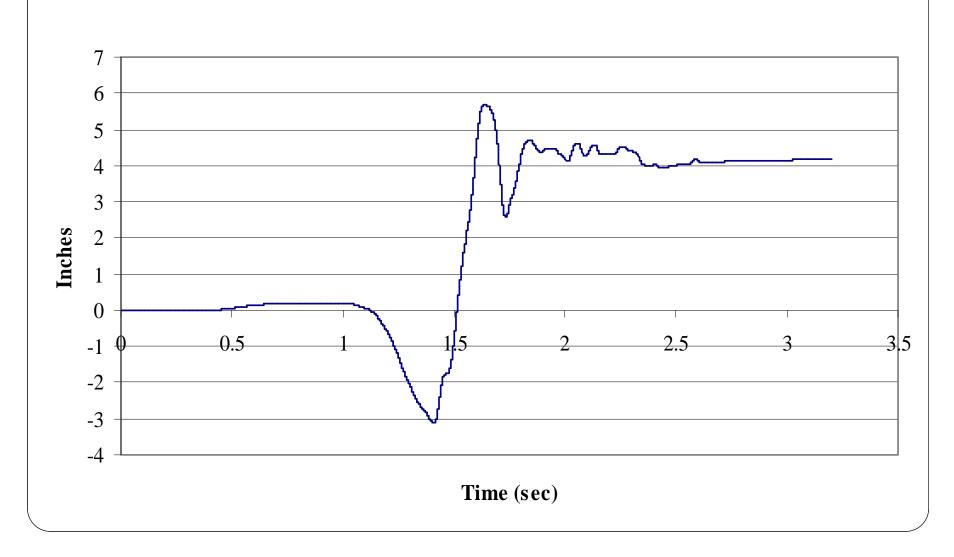



Load as Measured on the Road Bed

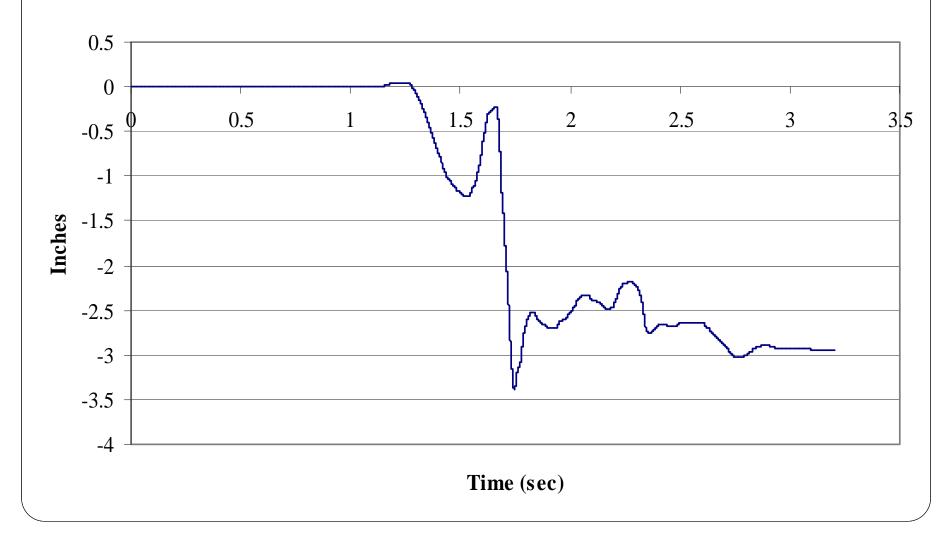


Measured Intrusion and Speed Adjacent to Dummy


1998 Mercedes ML	Intrus	sion (in)	on (in) Peak Intrusion	
Location	Peak	End of Test	(ft/sec)	(mph)
A-Pillar	-7.7	-5.3	-11.2	-7.6
B-Pillar	-5.4	-2.8	-7.9	-5.4
Roof Header	-7.6	-5.4	-11.5	-7.8
Near Side A-Pillar	-0.9	0.6	-3.0	-2.0



Road Bed Contact at 140° accelerates roll rate


Accelerating roll rate reduces road speed after energy transfer

String Potentiometer: Head Lateral Movement

Minus motion of driver dummy towards passenger side

String Potentiometer: Head Longitudinal Movement

Minus driver head motion is in flexion

Mercedes 2007 C- Class HSS Structure

C- Class HSS Roof Rail/A-pillar/Header Joint

C- Class Window Curtain Air Bag

			Table 1. NHTS	SA Roof Str	ength to Weigh	it Ratio (S	WR) vs. Plat	en Displac	ement Related to JRS Testing	
Vehicle		FMVSS 216	M216	Jordan Rollover System Test Data			Data			
Make	Model	Year Range	SWR	M216	JRS Test	Injury Measure	JRS Test	Injury Measure	Comments	JRS Compliance
Subaru	Forester	2007-1998	5.0 @ 3"		18 MPH, 10°	7.6 MPH	12 MPH, 10'	6.5 MPH	Sequence of two tests. Second with dummy.	Acceptable with retained glazing
Toyota	Corolla	2002-1998	4.3 @ 3.4"	1.26	15 MPH, 5°	4.0 MPH	15 MPH, 5°	5.1 MPH		
Toyota	Corolla	2002-1998	4.3 @ 3.4"	1.26	15 MPH, 10°	7 MPH	20 MPH, 10'	10.4 MPH	After 2 JRS tests at 5°.	Unacceptable at 10° Pitch
Toyota	Corolla	1994	2.5 @ 3.5"	1.13						
Nissan	Xterra	2004-2000	3.9 @ 2.6"	0.98	15 MPH, 10°	10.4 MPH	15 MPH, 10	10.2 MPH	Buck without roof rack; After M216, JRS at SWR = 3.2	Unacceptable
Valvo	XC90	2007-2003	3.5 @ 3"	2.13	15 MPH, 5 °	3.8 MPH	15 MPH, 5°	4.1 MPH	Black; After M216 Test	
Volvo	XC90	2007-2003	3.5 @ 3"	2.13	15 MPH, 5°	2.3 MPH	15 MPH, 5°	3.0 MPH	White	
Volvo	XC90	2007-2003	3.5 @ 3"	2.13	15 MPH, 10°	6.9 MPH			White; After 2 JRS tests at 5°	Acceptable
Nissan	Sentra 2 Door	1999-1995	2.8 @ 3.1"		15 MPH, 5°	9.6 MPH	N/A	N/A		Unacceptable
Hyundai	Sonata	2005-1999	2.8 @ 4"		15 MPH, 5°	6.1 MPH	15 MPH, 5°	8 MPH		Unacceptable
Mitsubishi	Eclipse	1994-1990	2.5 @ 3.3"	1.17	15 MPH, 5°	12.1 MPH				Unacceptable
Kia	Sorento	2007-2003	1.9 @ 3"		15 MPH, 5 °	9 MPH	15 MPH, 5 °	9 MPH		Unacceptable
Jeep	Grand Cherokee	2004-1999	1.7 @ 3.6"		18 MPH, 10°	12.9 MPH	12 MPH, 10	N/A	Second with dummy	Unacceptable
Jeep	Grand Cherokee	1998-1993	2.3 @ 3.8"	0.98	12 MPH, 5°	4.7 MPH	14 MPH, 5°	8 MPH	Buck; After M216, first JRS at SWR = 3.4, Then at 2.5	Unacceptable
Ford	Explorer	2001-1995	1.9 @ 3"	0.72	15 MPH, 5°	12.1 MPH	15 MPH, 5°	9 MPH		Unacceptable
Isuzu	VehiCROSS	2001-1999			15 MPH, 5°	11.1 MPH	15 MPH, 5°	8.6 MPH		Unacceptable
Isuzu	Rodeo	1997-1991	1.9 @ 5"	1.15	15 MPH, 5°				Buck; After M216, first JRS at SWR = 1.6, Then, at 1.6 again.	Unacceptable
GMC	Jimmy	2001-1995	1.5 @ 5"	0.69	15 MPH, 5°	9.8 MPH	15 MPH, 5 °	8.3 MPH		Unacceptable
Chevy	S-10 Blazer	2005-1995	1.5 @ 5"	0.76	15 MPH, 5 °	10.1 MPH	N/A	N/A		Unacceptable
Chevy	Suburban	2006-2000	1.6 @ 3.2"		15 MPH, 10 *	7.7 MPH				Unacceptable
and Rover	Discovery	2004-1999	1.7 @ 3"		15 MPH, 5°	9.3 MPH	15 MPH, 5°	9.5 MPH	Rear seat 5th percentile dummy	Unacceptable
Chevy	Suburban	1999-1992	1.9 @ 4.9"	0.69	15 MPH, 5°			N/A	Buck; JRS at SWR = 2.1	Unacceptable
Chevy	Silverado 2500 HD	2007-1999	2.5 @ 5"	1.02	15 MPH, 5 °			8.3 MPH		Unacceptable

All SWR data @ unloaded vehicle weight (SWR). Maximum UVW (MUVW) reduces the SWR by 20% and increases injury potential accordingly.

Injury potential measures of less than 7 MPH have a low probability of serious injury.

Injury potential measures of more than 7 MPH and less than 10 MPH have a high probability of serious injury.

Injury potential measures of more than 10 MPH have a high probability of severe to fatal injury.

Population Effected

	PRIA		Revised As	sessment
Population Affected	Serious	<u>Fatal</u>	Serious	<u>Fatal</u>
No fixed collision on top	19,000	7,426	19,000	7,426
Not totally ejected	13,000	3,559	18,000	6,500*
Using safety restraint	9,600	2,026	17,000	6,100†
Front outboard seats	9,000	1,780	16,000	5,900
Not 12 years or older	9,000	1,764	16,000	5,900‡
Roof Component Intrusion	7,100	1,030	14,000	4,700§
Head/neck/face Injury from intruding	2,400	751	14,000	4,700
Sole MAIS Injury	800	225^	14,000	4,700

Note: Occupants who have the potential to benefit from a strong roof are shown in bold type.

Table 1. Revised estimates of the population affected in comparison with the NPRM by improved roof crush resistance based on the PRIA Table IV-2.

5th Percentile Adult (10yr old child) Dummy in Rear Seat

High Speed: Interior View

Xprtsue

Produced for Use Only in Luckey v. Land Rover North America Inc.

JRS Insights to Occupant Protection

Near side Window Curtain Airbag

Far side 10° Pitch Intrusion w/ buckled header

Conclusion The JRS can compare the injury and ejection potential of vehicles and occupant protection devices in rollovers and can definitively test vehicle safety components and their causal relationship to decreasing death and injury in crashes or tests.

NHTSA-CFIR Activities

- 2001 NHTSA legislatively directed to evaluate dynamic rollover testing
- 2001 2005 CFIR submits 28 comments to the NHTSA 1999-5572 Docket.
- 2005 NHTSA dynamic rollover evaluation incomplete and requests additional data. CFIR submits 6 additional comments to NHTSA 2005-22143 Docket.
- CFIR briefs NHTSA on December 8, 2006 in Washington, DC (and submits confidential detailed electronic data on 10 production vehicles to NHTSA)
- December 9, 2006 CFIR briefs United States House and Senate Congressional committees with NHTSA oversight
- December 11, 2006 CFIR briefs Insurance Institute for Highway Safety (IIHS)
- February 23, 2007 CFIR briefs NHTSA in Santa Barbara, California on detailed responses to NHTSA concerns

NHTSA-CFIR Activities - Continued

- March 8, 2007 CFIR briefs NHTSA at NCAP hearing in Washington, DC. Indications are that timing for dynamic legislative response is too tight, research will take too long, increased Strength to Weight Ratio (SWR) static compliance will continue.
- May 2007 NHTSA requests authorization for a Supplementary Notice of Proposed Rule Making (SNPRM) extending final rule until October 2008

June 8, 2007 – CFIR submits correlation of intrusion speed and dummy Nij injury measures, comparison of FMVSS 216 compliance versus JRS dynamic injury and ejection potential acceptability for 17 production vehicles, recommends that JRS or finite element dynamic tests establish the static criteria for compliance, as well as four ESV papers summarizing results of JRS Testing